23 research outputs found

    Pheromone based alternative route planning

    Get PDF
    In this work, we propose an improved alternative route calculation based on alternative figures, which is suitable for practical environments. The improvement is based on the fact that the main traffic route is the road network skeleton in a city. Our approach using nodes may generate a higher possibility of overlapping. We employ a bidirectional Dijkstra algorithm to search the route. To measure the quality of an Alternative Figures (AG), three quotas are proposed. The experiment results indicate that the improved algorithm proposed in this paper is more effective than others

    A Novel Interactive Fusion Method with Images and Point Clouds for 3D Object Detection

    No full text
    This paper aims at tackling the task of fusion feature from images and their corresponding point clouds for 3D object detection in autonomous driving scenarios based on AVOD, an Aggregate View Object Detection network. The proposed fusion algorithms fuse features targeted from Bird’s Eye View (BEV) LIDAR point clouds and their corresponding RGB images. Differing in existing fusion methods, which are simply the adoption of the concatenation module, the element-wise sum module or the element-wise mean module, our proposed fusion algorithms enhance the interaction between BEV feature maps and their corresponding image feature maps by designing a novel structure, where single level feature maps and utilize multilevel feature maps. Experiments show that our proposed fusion algorithm produces better results on 3D mAP and AHS with less speed loss compared to the existing fusion method used on the KITTI 3D object detection benchmark

    Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries

    No full text
    Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of similar to 30 Ohm/sq. It shows a high specific charge storage capacity (similar to 2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers similar to 10 times improvement in specific capacity compared with widely used graphite/copper anode sheets.

    Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode

    No full text
    Silicon, as an alloy-type anode material, has recently attracted lots of attention because of its highest known Li(+) storage capacity (4200 mAh/g). But lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Silicon nanostructures such as nanowires and nanotubes can overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon as inorganic glue replacing conventional polymer binder. This inorganic glue method can solve the loss of contact issue in conventional silicon particle anode and enables successful cycling of various sizes of silicon particles, both nano-particles and micron particles. With a limited capacity of 800 mAh/g, relatively large silicon micron-particles can be stably cycled over 200 cycles. The very cheap production of these silicon particle anodes makes our method promising and competitive in lithium ion battery industry. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3560030] All rights reserved.
    corecore